Отримати консультацію
Training Center MUKКурсыIBMSPSSData science without a Ph.D. Using IBM SPSS Modeler (v18.1.1)

Data science without a Ph.D. Using IBM SPSS Modeler (v18.1.1)

Код курсу
0A018UA
Тривалість
1 Днів, 8 Ак. Годин
Опис курсу
Цілі
Вимоги
Програма курсу
Опис курсу

Course overview

This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build models, evaluate models, and deploy models. To learn about these data science concepts and topics, participants will use IBM SPSS Modeler as a tool.

Цілі

Course objectives

  • Introduction to data science and IBM SPSS Modeler
  • Setting measurement levels
  • Exploring the data
  • Using automated data preparation
  • Partitioning the data
  • Selecting predictors
  • Using automated modeling
  • Evaluating models
  • Deploying models
Вимоги

Audience

  • Business Analysts
  • Data Scientists
  • Participants who want to get started with data science

Prerequisites

  • It is recommended that you have an understanding of your business data
Програма курсу

Course topics

1: Introduction to data science and IBM SPSS Modeler

  • Explain the stages in a data-science project, using the CRISP-DM methodology
  • Create IBM SPSS Modeler streams
  • Build and apply a machine learning model

2: Setting measurement levels

  • Explain the concept of ‘field measurement level’
  • Explain the consequences of incorrect measurement levels
  • Modify a field’s measurement level

3: Exploring the data

  • Audit the data
  • Check for invalid values
  • Take action for invalid values
  • Impute missing values
  • Replace outliers and extremes

4: Using automated data preparation

  • Automatically exclude low quality fields
  • Automatically replace missing values
  • Automatically replace outliers and extremes

5: Partitioning the data

  • Explain the rationale for partitioning the data
  • Partition the data into a training set and testing set

6: Selecting predictors

  • Automatically select important predictors (features) to predict a target
  • Explain the limitations of automatically selecting features

7: Using automated modeling

  • Find the best model for categorical targets
  • Find the best model for continuous targets
  • Explain what an ensemble model is

8: Evaluating models

  • Evaluate models for categorical targets
  • Evaluate models for continuous targets

9: Deploying models

  • List two ways to deploy models
  • Export scored data
Реєстрація на найближчий курс
Data science without a Ph.D. Using IBM SPSS Modeler (v18.1.1)
Код курсу:
0A018UA
Тривалість:
1 Днів, 8 Ак. Годин
Зареєструватися
Отримати консультацію
Свяжитесь со мной
Отримати консультацію
Отправить заявку
Реєстрація на вебінар
Отправить заявку
Ваша заявка отримана!
Ми зв`яжимося з вами найближчим часом.