Konsultasiya almaq
Training Center MUKКурсыIBMSPSSIntroduction to Time Series Analysis Using IBM SPSS Modeler (v18.1.1)

Introduction to Time Series Analysis Using IBM SPSS Modeler (v18.1.1)

Kursun kodu
0A028UA
Müddət
1 Gün, 8 Saat
Kursun təsviri
Məqsədlər
Tələblər
Kursun proqramı
Kursun təsviri

Course overview

This course gets you up and running with a set of procedures for analyzing time series data. Learn how to forecast using a variety of models, including regression, exponential smoothing, and ARIMA, which take into account different combinations of trend and seasonality. The Expert Modeler features will be covered, which is designed to automatically select the best fitting exponential smoothing or ARIMA model, but you will also learn how to specify your own custom models, and also how to identify ARIMA models yourself using a variety of diagnostic tools such as time plots and autocorrelation plots.

Məqsədlər

Course objectives

  • Please refer to course overview
Tələblər

Audience

Roles: Business Analyst, Data Scientist

Specifically, this is an introductory course for:

  • Anyone who is interested in getting up to speed quickly and efficiently using the IBM SPSS Modeler forecasting capabilities

Prerequisites

  • Familiarity with the IBM SPSS Modeler environment (creating, editing, opening, and saving streams).
  • General knowledge of regression analysis is recommended but not required
Kursun proqramı

Course topics

1: Introduction to time series analysis

  • Explain what a time series analysis is
  • Describe how time series models work
  • Demonstrate the main principles behind a time series forecasting model

2: Automatic forecasting with the Expert Modeler

  • Examine fit and error
  • Examine unexplained variation
  • Examine how the Expert Modeler chooses the best fitting time series model

3: Measuring model performance

  • Discuss various ways to evaluate model performance
  • Evaluate model performance of an ARIMA model
  • Test a model using a holdout sample

4: Time series regression

  • Use regression to fit a model with trend, seasonality and predictors
  • Handling predictors in time series analysis
  • Detect and adjust the model for autocorrelation
  • Use a regression model to forecast future values

5: Exponential smoothing models

  • Types of exponential smoothing models
  • Create a custom exponential smoothing model
  • Forecast future values with exponential smoothing
  • Validate an exponential smoothing model with future data

6: ARIMA modeling

  • Explain what ARIMA is
  • Learn how to identify ARIMA model types
  • Use sequence charts and autocorrelation plots to manually identify an ARIMA model that fits the data
  • Check your results with the Expert Modeler
Ən yaxın kurs üçün qeydiyyat
Introduction to Time Series Analysis Using IBM SPSS Modeler (v18.1.1)
Kursun kodu:
0A028UA
Müddət:
1 Gün, 8 Saat
Qeydiyyatan keç
Konsultasiya almaq
Свяжитесь со мной
Konsultasiya almaq
Отправить заявку
Vebinara qeydiyyat
Отправить заявку
Müraciətiniz qəbul olundu!
Yaxın zamanda sizinlə əlaqə saxlanılacaq.